Vitamins

definition (attributes)

- organic low molecular weight compounds synthesized by autotrophic org.
- not a source of energy or building material
- function as biocatalysts (necessary for metabolism and regulation of metabolism)

exogenous essential biocatalysts

•autotrophic organisms (bio)synthesis
 •heterotrophic organisms: - partial synthesis

 -from food
 - intestinal microflora

niacin thiamin biotin corinoids (B₁₂) vitamin K

eg.

biosynthesis from Trp (1 mg ~ 60 mg) very low amount by intestinal microflora high amount by intestinal microflora high amount by intestinal microflora high amount by intestinal microflora

terminology and classification

formerly connection with illnesess

Α	retinol	vitamin against night blindness
С	ascorbic acid	against scurvy
D	calcipherols	against rickets
B ₁	thiamine	
K ₁	phylloquinon	
	C D B ₁	Cascorbic acidDcalcipherolsB1thiamine

letters of alphabet, numbers D₂ (ergocalcipherol), D₃ (cholecalcipherol)

simple trivial names ascorbic acid

water soluble (hydrophilic)

- 1. thiamine (aneurin, B₁)
- 2. riboflavin (lactoflavin, B₂, formerly G)
- **3.** niacin (nicotinic acid, B₃;

nicotinamide, PP)

- 4. pantothenic acid (B₅)
- 5. pyridoxine (~al, ~ol, ~amin, B₆)
- 6. biotin (H)
- 7. folic acid (folate, B_c, B₉)
- 8. cyanocobalamin (corinoids, B₁₂)
- 1.-8. group of vitamins B (B-complex)
- 9. ascorbic acid (vitamin C)

fat soluble (lipophilic)

- 10. retinoids (A)
- 11. calciferols (D)
- 12. tocopherols (E)
- 13. phylloquinones (K)

water soluble :

main losses by leaching cofactors of enzymes (coenzymes, prosthetic groups) excess - excretion by urine

fat soluble :

main losses by oxidation other functions excess - storage in liver

> possible hypervitaminosis

vitamin	task in metabolism	symptoms of deficiency (avitaminosis)
thiamine	met. of saccharides, proteins	muscle fatigue, loss of appetite, weight loss
	decarboxylases, dehydrogenases,	irritability,
	transketolases, carboligases	beri-beri (neurological disease)
riboflavin	met. of proteins (redox reactions) flavin enzymes, glucose oxidase	ariboflavinosa, accumulation of amino acids inflammatory changes of the skin, mucous membranes
niacin	met. of saccharides, proteins dehydrogenases, other enzymes in Krebs cycle	pellagra (dermatitis) malfunctions of digestive and nervous system
pyridoxine	met. of aminoacids	disorders of protein metabolism, synthesis
pyndoxine	dehydrases (lysyloxidase), aminotransferases, racemases of aminoacids, synthases	of hemoglobin, dermatitis, nervous disorders (seizures in children)
pantothenic	met. of fats, saccharides, proteins	dermatitis
acid	transacylases, synthetases of fatty acids	
biotin	met. of fats (gluconeogenese), proteins karboxylases (transfer of CO ₂), transcarboxylases, decarboxylases	dermatitis
folacin	met. of proteins, nucleotides, nucleosides transferases (transfer of 1C fragments)	anemia (macrocytic) changes of erythrocytes
corinoids	met. of haem pigments transferases (transfer of 1C fragments)	anemia (pernicious)

terminology

hypovitaminosis avitaminosis

hypervitaminosis retention restitution fortification provitamin antivitamin insufficient intake temporary absolute shortage (malfunction of biochemical functions) excessive intake (failure of functions) vit. A, D maintaining of original amounts (in %) addition to the original amount (level) addition to higher then original amount precursor (biologically inactive substance) substances blocking biochemical usage of vitamin (vitamin antagonists)

- structural analogues (competitive inhibitors) (oxythiamine)
- enzymes catalyzing the degradation of vitamins (thiaminases)
- substances forming unusable complexes with vitamins (avidin)

amount (in food)

• international units

vitamin A	1 IU = 0.3 μ g retinol = 0.6 μ g β -carotene
	1 RE = 1 μ g retinol = 3.33 IU (RE=Retinol Equivalents)
vitamin D	1 IU = 0.025 μ g vitamin D ₃ (or D ₂)
vitamin E	1 IU = 1 mg <i>all-rac</i> α -tocopheryl-acetate

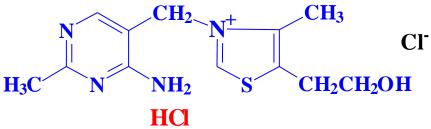
- mass units
- rich sources of vitamins x important sources of vitamins

required amount type of organism age physiological state

recommended daily intake of vitamin C :

Age (years)	<1	1-4	4-10	10-18	> 18
mg / day	35	40	40	45	45-80

recommended daily intake in Czech Republic (Annex no. 5 of the Decree no. 225/2008 Coll.)


thiamine (B ₁)	mg	1.4
riboflavin (B ₂)	mg	1.6
niacin (B ₃)	mg	18
pyridoxine (~al, ~ol, ~amin, B ₆)	mg	2
pantothenic acid (B ₅)	mg	6
folic acid (B _c)	μg	200
biotin (H)	mg	0.15
cyanocobalamin (corinoids, B ₁₂)	μg	1
ascorbic acid (C)	mg	60
retinoids (A)	μg	800
calcipherols (D)	μg	5
tocopherols (E)	mg	10

application

- additives for restitution and fortification all vitamins
- colours riboflavin, provitamins A
- antioxidants vitamin C, provitamins A, vitamin E

thiamine B₁

- free
- bound (phosphates: mono-, di-, triphosphate, diphosphate = cofactor of enzymes
 CH₂ + CH₃
- other forms (thiol, disulfide)
- thiaminchloridhydrochlorid (synth.)

pork meat

- thiamine 18%
- diphosphate 52%
 - thiol 22% (decomposition in pH neutral media)
- disulphide 8% (product of thiol oxidation)

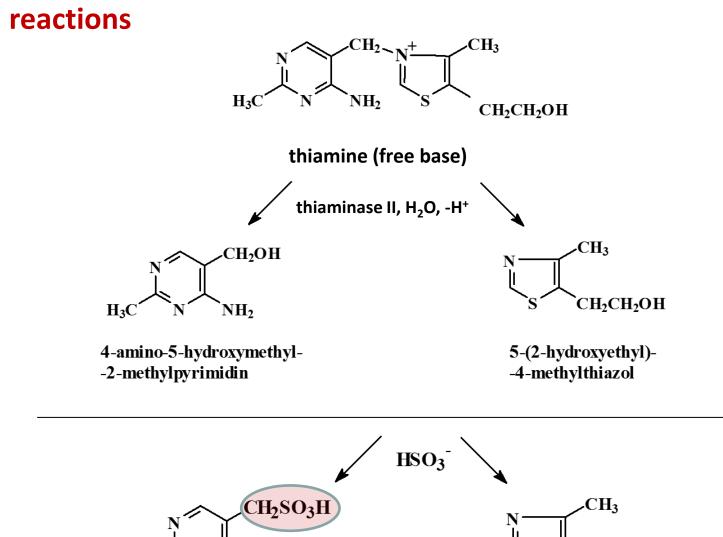
sources (mg/100 g)

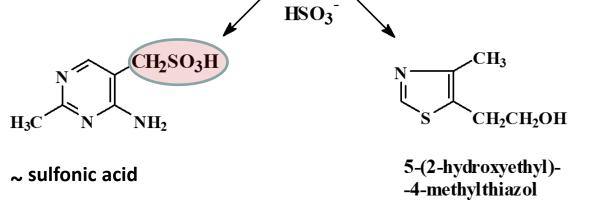
•	cereals, legumes	0.1-1	mainly free form
•	pork meat	1	mainly diphosphate
•	beef meat	0.04-0.1	
•	fruit	0.04-0.1	
•	vegetable	0.03-0.15	
•	potatoes	0.05-0.18	
•	beer	traces	mainly in yeasts

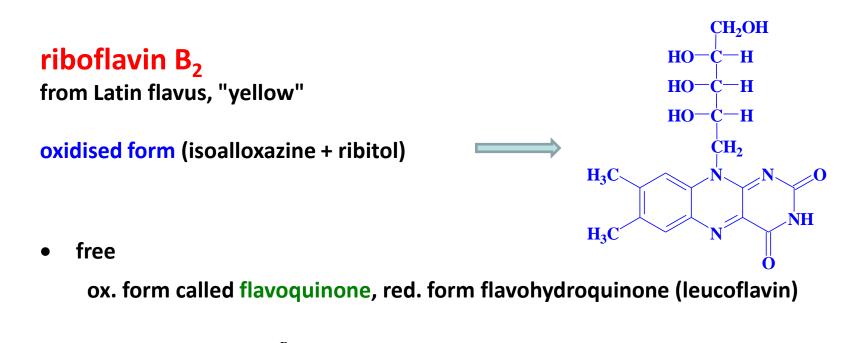
intake covered by (%)

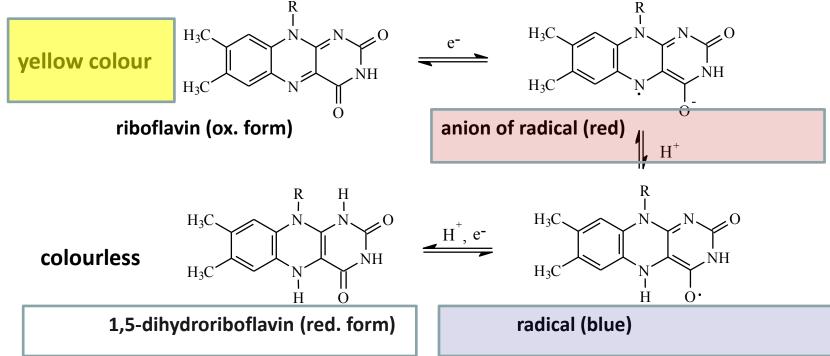
•	cereal products (bread)	43 (20)
•	meat and meat products	18-27
•	milk and dairy products	8-14
•	potatoes	10
•	legumes	5
•	vegetables	12
•	fruits	4
•	eggs	2

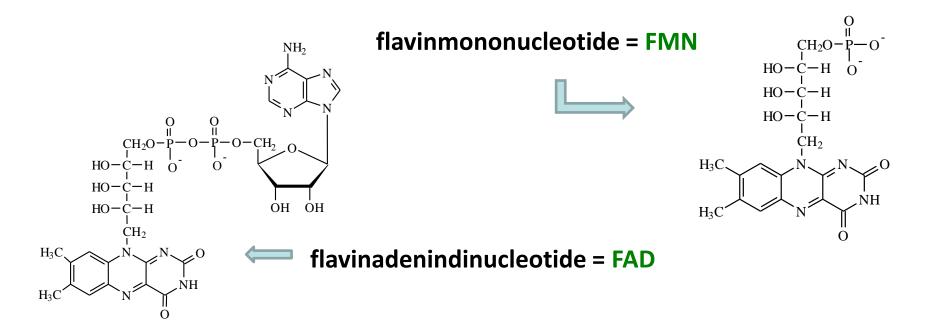
losses very labile vitamin (especially in neutral and alcalic pH)


•	boiling of pork meat	~ 40-60%
•	baking of bread	~ 25-30%
•	boiling of potato (by leaching)	~ 25%
•	preservation of non-acid foods by SO ₂	up to 100%


preservation of non-acid foods by SO_2

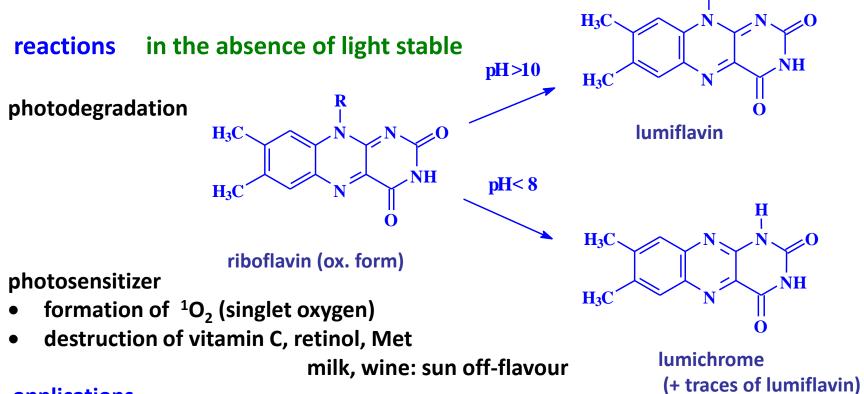

applications


•fortification (restitution) - wheat flour, breakfast cereals, rice


• ingredient for simulating the aroma of meat

• bounded

cofactor of flavoproteins (flavin enzymes) FMN, FAD


- other forms
 - 5'-phosphate (widely), 5'-malonylriboflavin (oat)

sources (mg/100g)

- meat
 livers
 3
- milk 0.2
- cheeses 0.5
- beer
 0.05 (difference from thiamine)

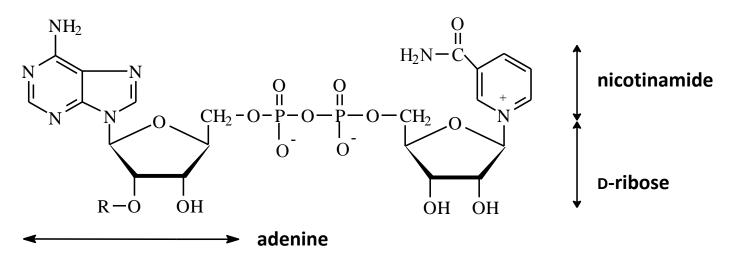
covered by (%)

- milk, cheeses 36% mainly riboflavin, bound to α and β -casein
- meat 19% mainly FMN, FAD
- cereals 15%
- eggs 8% mainly riboflavin
- vegetables 8%

CH₃

applications

- fortification
- colour → yellow-green colour



nicotinic acid

nicotinamide

- free (acid-plants, amide-animals) low amount
- bound (proteins): NAD a NADP cofactors of hundreds of enzymes

Nicotinamide Adenine Dinucleotide - NAD

(ox. form = NAD⁺ and red. form = NADH) NAD⁺ R = H,

Nicotinamide Adenine Dinucleotide Phosphate - NADP (NADP⁺ and NADPH) NADP⁺ R=PO₃H₂

• other forms:

HO OH + polypeptide HO O-C Nniacin bounded on glycopeptides

trigonellin

alkaloid (coffee, legumes, cereals)

sorghum, maize

Sorghum - grains are grown for human consumption (eg flour), animal feed or for technical purposes

sources (mg / 100 g)

•	meat	5-15
•	legumes, fruits, vegetables	0.7-2
•	eggs	0.1
•	coffee roasted	50
	green (unroasted)	2

intake covered by (%)

- meat 33
- milk 13
- cereals 21
- potatoes 9

reactions

• limited hydrolysis of the amide, acid is stable

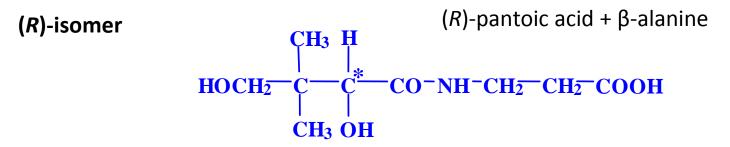
losses

• by leaching

Calcium hydroxide, traditionally called slaked lime, is an inorganic compound with the chemical formula Ca(OH)₂

Because of its low toxicity and the mildness of its basic properties, slaked lime is widely used in the food industry to:

- make corn tortillas - it helps the corn flour (masa) bind together

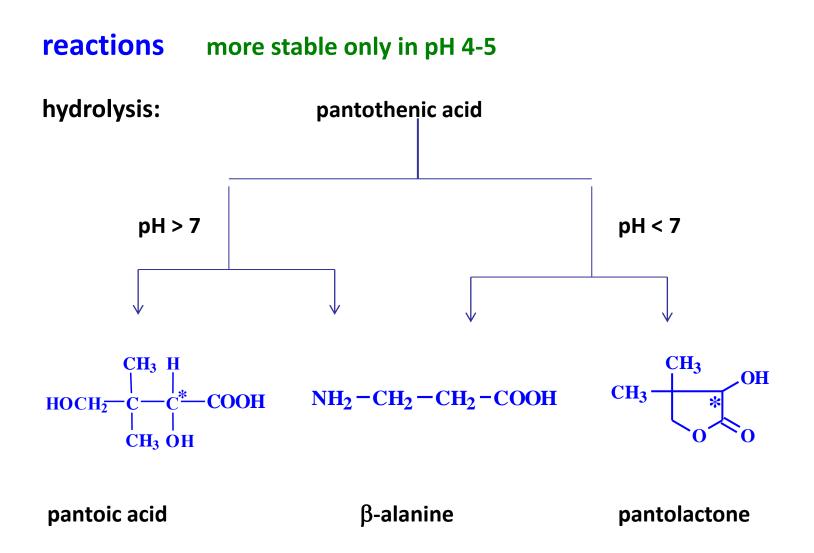

Mexican tortilla (from corn flour + lime milk)

material	free vitamin (mg/kg)	
raw corns	0.4	
boiled in water	3.8	
boiled in lime milk	24.6 (100 %)	

pantothenic acid B₅

- free form (low amount)
- bound coenzyme A (CoA) component of transacylases,

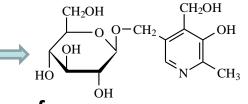
the most common is acetyl-CoA


- Acyl-Carrier Protein (ACP) – coenzyme of synthetases of FA

sources

- meat, fishes
- cheese (in milk only low amount)
- whole cereal products
- legumes
- fruits, vegetables (low amount)

intake covered by (%)


sufficient coverage

pyridoxine B₆

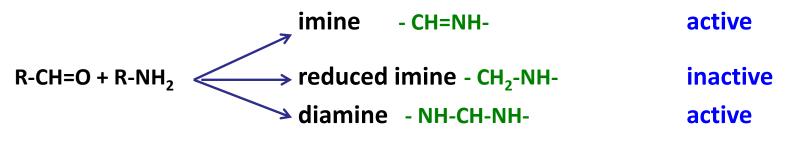
- free form
- their 5'- phosphates (metabolically active form)
- **5-***O*-β-D-glucoside (5-70% in cereals, fruits, vegetables)

pyridoxal 5'-phosphate – cofactor of decarboxylases, aminotransferases,...

sources

- animal food: pyridoxal, pyridoxol
- plant food: pyridoxal, pyridoxamin

meat, yolk germ of cereals


5

intake covered by (%)

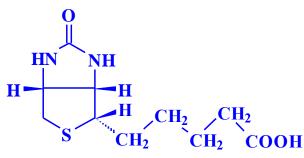
- meat 40
- vegetables 22
- milk 12

- cereals 10fruits 8
- legumes

reactions - lower stability in neutral and alcalic pH Maillard reaction

R-CH=O + R-SH (e.g. cystein) _____ pyridoxylthiol + disulphide low activity

losses


• dried milk 30-70%

(reaction with Lys and Cys)

applications

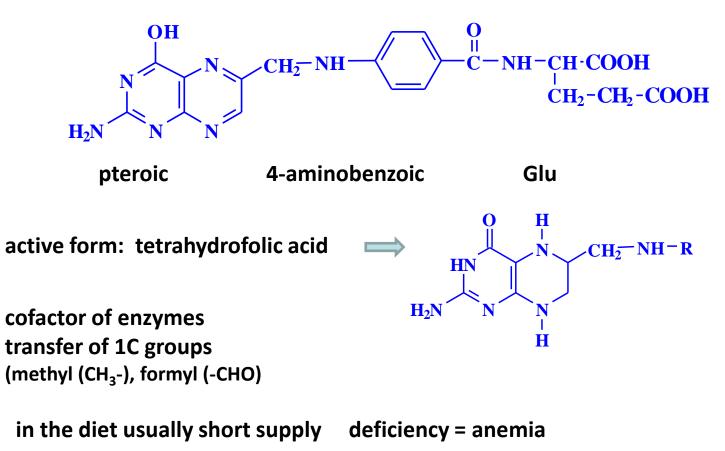
• fortification

biotin H

(+)-biotin, (3aS, 4S, 6aR)-isomer

biotin - cofactor of enzymes catalyzing CO₂ transfer carboxylases, transcarboxylases and decarboxylases

sources - egg yolk, liver, whole grain cereal products, vegetables, yeast


deficiency is rare

when consuming excessive amounts of raw eggs, as raw egg white contains a glycoprotein avidin, which forms a very strong biotin complex

folacin B_c or B₉

derivatives of folic (pteroylglutamic) acid

3-8 molecules Glu

sources - leaf vegetables, cereals (in the surface layers of the caryopsis), liver, eggs, yeast

corrinoids B₁₂

substituted corrin cycles with central Co atom 4 pyrrols without CH bridge between cycles A-D

central atom Co up to 6 coordination bonds

5. coord. bond - α = 5,6-dimethylbenzimidazole

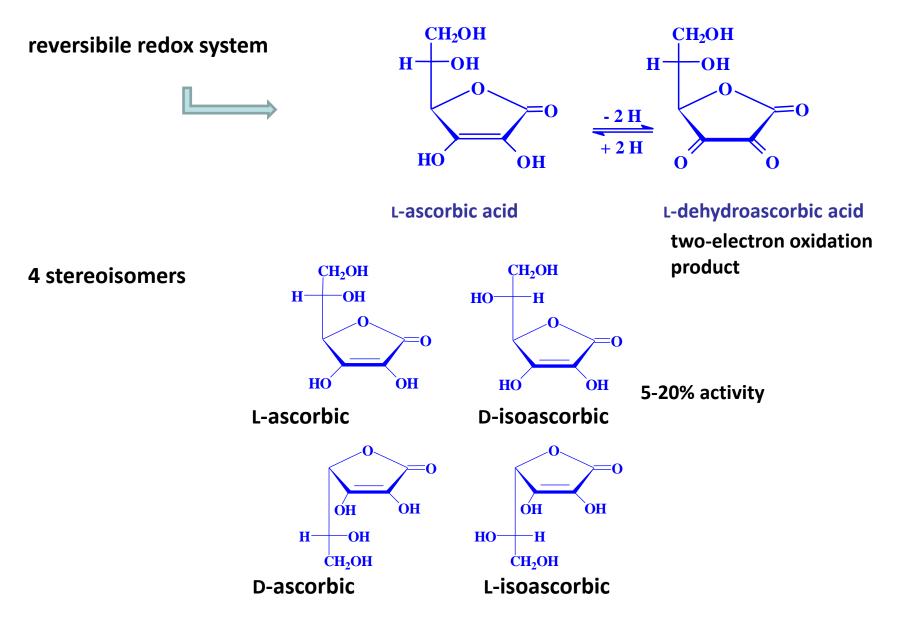
6. coord. bond - <mark>β =</mark> OH	hydroxycobalamine
H ₂ O	aquacobalamine
CH ₃	methylcobalamine
CN	cyanocobalamine (synthetic form – in multivitamine
	preparates)

B

Α

I)

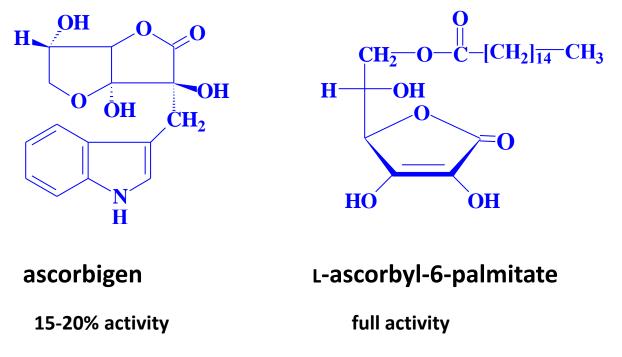
cobalamines


α

coenzyme B₁₂ - prosthetic group of many enzymes

is not present in plant foods

sources – meat (70%), milk and dairy products (20%), eggs (9%)


vitamin C (ascorbic and dehydroascorbic acid)

- free
- bound

ascorbigen in brassica vegetables

ascorbyl palmitate (antioxidant) E304 - fats, oils, margarines, cereal products

vit. C - Involved in – hydroxylation of Pro to Hyp and Lys to Hyl in procollagene - absorption and transport of ions (Fe, Na, Cl, Ca)

sources

fruits(mg/kg)rose hips2 500-10 000blackcurrant1 100-3 000strawberries400-700citrus fruits240-700apples15-50

vegetables

curly parsley	1 500-2 700
peppers	620-3 000
cabbage	170-700
potatoes	80-400

intake covered by (%)

potatoes	20-30	
vegetables	30-40	
fruits	30-35	
milk	9	0.5-2 mg / 100 ml

<u>synthesize</u>

• green plants

(photoautotrophic)

• part of animals

vitamin is for:

- humans
- primates
- guinea pigs

acerola, Barbados cherry (Malpighia emarginata) (Spanish pronunciation: [ase, rola]

native to South America, southern Mexico, and Central America, but is now also being grown in subtropical areas of Asia, such as India

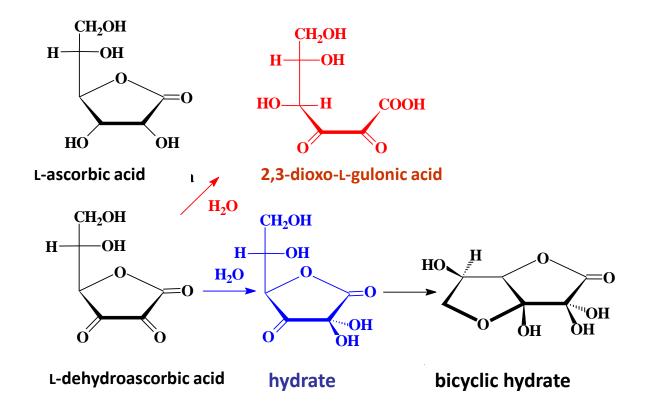
extremely rich in vitamin C 17-46 g/kg

The fruit can be used to make juices and pulps, vitamin C concentrate, and baby food, among other things

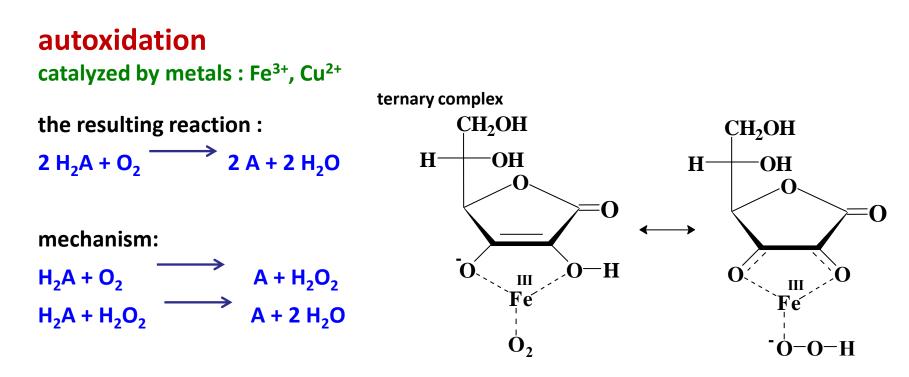
reactions

- losses by leaching
- in presence of O₂: enzymatic oxidation and autoxidation
- in absence of O₂: degradation catalyzed by acids total losses: 20-80%

enzymatic oxidation


ascorbatoxidase, ascorbase, peroxidase (in damaged plant tissues)

the resulting reaction: $2 H_2 A + O_2 \longrightarrow 2 A + 2 H_2 O$


H₂A= ascorbic acid A=dehydroascorbic acid

dehydroascorbic acid - unstable

hydrolysis in neutral and alkaline pH

prevention: blanching (pre-cooking), reduction by SO₂

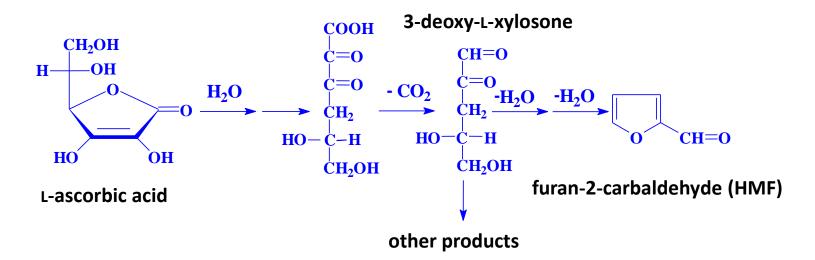
consequences :

oxidation of other components H_2O_2 (myoglobin, lipids, anthocyans)

prevention :

preventing access of oxygen (air)

inert atmosphere, deaeration, HSO₃-, fermentation

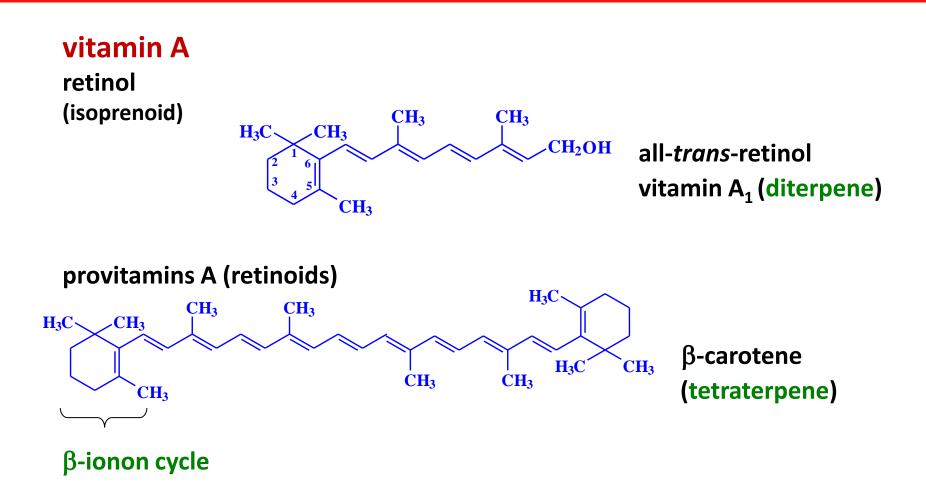

• reduction of ions Fe³⁺, Cu²⁺

by addition a chelating agent

unfavorable conditions(lower a_w, pH)

acid catalyzed degradation

lower speed than reactions catalyzed by metals max. = pH 4, min. = pH 2

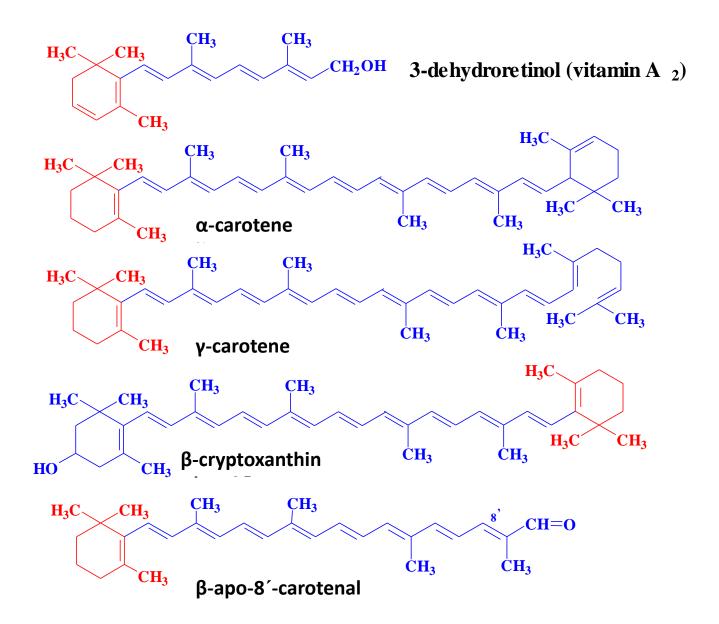

the main cause of losses in canned products in the absence of oxygen fruit juice at 50 °C - the loss at 12 weeks 70-95% of vitamin C

application

- vitamin
- antioxidant
- complexing agent

in food technologies :

- canning (prevention of aroma and colour changes, removal of O₂, inhibition of browning)
- fermentation (prevention of turbidity)
- meat (improvement and a acceleration of curing, NO₂⁻) + inhibits the formation of nitrosamines
- fats (antioxidant)
- cereals (formation of disulphide bridges in proteins in dough)



further active substances (50 natural + 2500 synthetic derivatives)

- 3-dehydroretinol (vitamin A₂)
- α-carotene

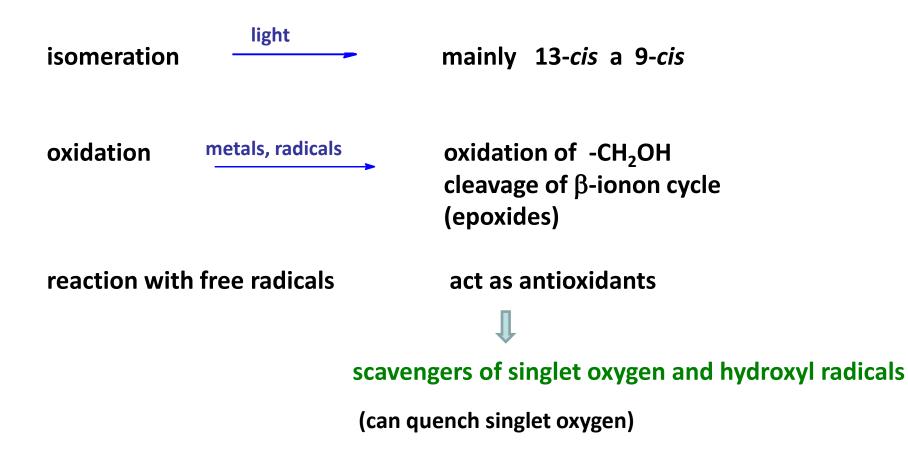
- γ-carotene
- cryptoxanthin and others

vit. A - of particular importance in biochemistry of visual perception

sources (mg/kg)

• animal materials (retinol / provitamins A)

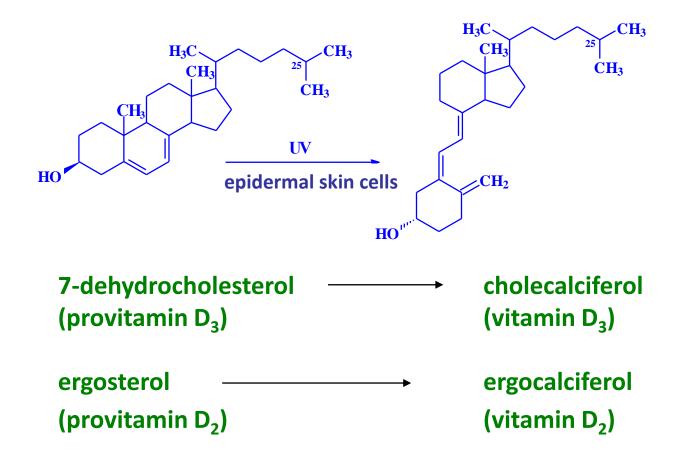
meat	0.1 / 0.4
liver	30-400 / 300
butter	5-10 / 4-8
fish liver oil, marg	arines


• plant materials (provitamins A)

carrot	20-95
spinach	50-480
apricots	6-20

intake covered by (%)

• liver	23	esters, mainly C _{16:0}
• butter	17	
 milk, cream 	15	
• carrot	14	
 margarines 	9	retinyl acetate, retinyl palmitate

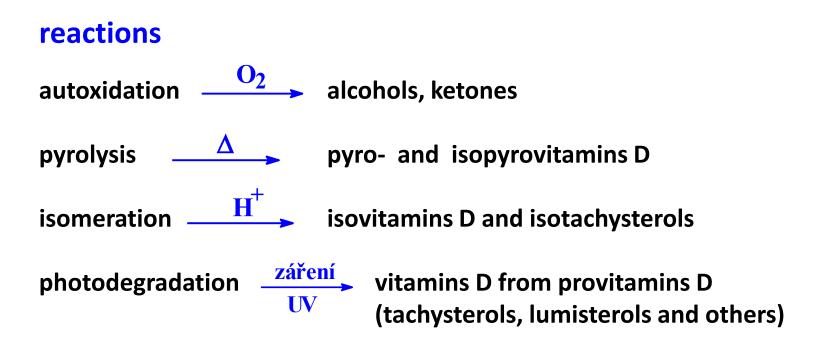

reactions unstable (especially on light, oxidation by atmospheric oxygen)

vitamin D (calciferols)

9,10-secosteroids

cholecalciferol (vitamin D₃)

sources (µg /kg)

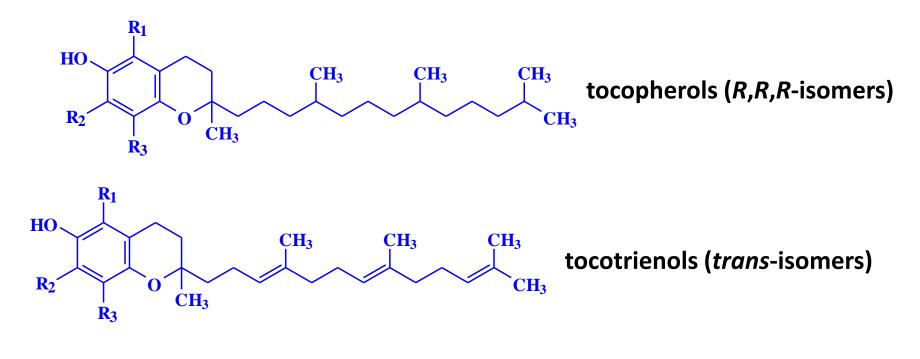

•	sea fish	50-450
•	egg yolk	30-50
•	butter	10-20
•	liver	2-11
•	milk	1
•	cream	4
•	meat	3

fish liver oil, margarines

intake covered by (%)

margarines	34
fatty fish	17
eggs	16
milk, cream	12
butter, cheeses	9

higher fungi, moulds (cheese)


application

fortification

- margarins
- milk
- breakfast cereals

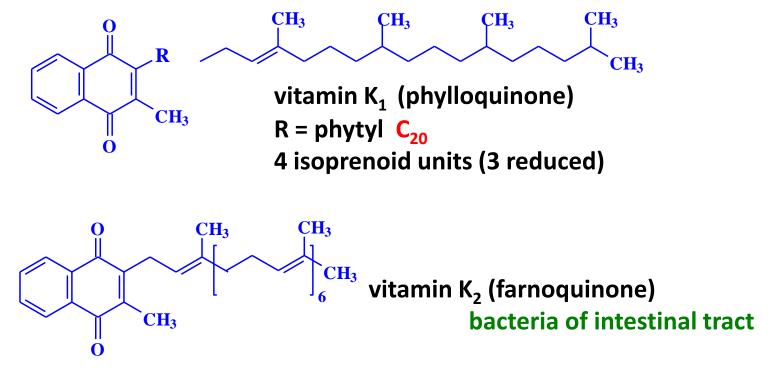
vitamin E (tocopherols and tocotrienols)

6-hydroxychromans, phytol (C₂₀), tocol

derivative	R ₁	R ₂	R ₃
α-	CH₃	CH3	CH₃
β-	CH3	Н	CH3
γ-	Н	CH₃	CH₃
δ-	Н	Н	CH₃

sources (mg/100 g)

•	plant oils	50-200
•	plant materials	< 0.5
•	animal materials	low amount


oils

% vitamin E	α-Τ	β-Τ	γ-Τ	δ-Τ	∑TT
soy	11	-	66	23	-
corn	18	-	81	1	-
wheat germ	60	34	-	-	6

antioxidant effect: δ -T > γ -T > β -T > α -T (vitamin E and Se)

vitamin K

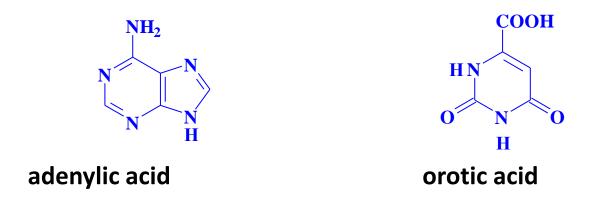
similar structure to coenzymes Q, 1,4-naphthoquinone, terpenoid chain (phytol C₂₀) basic substance menadione

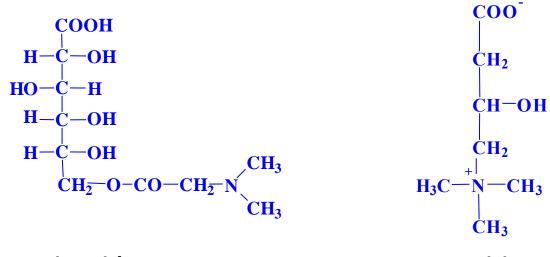
7 isoprenoid units (commonly 4-10, even 0-13)

sources

(mg / 100 g)

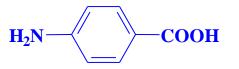
leaf vegetables (cabbage, spinach)3-4pea, tomatoes, meat (including liver)0.1-0.4milk0.002-0.02pork liver (forms)K₁, MK-4, MK 7-10

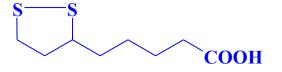

reactions photodegradation $\underbrace{UV}_{}$ oxidation $\underbrace{O_2}_{OH}$ epoxides (2,3-epoxides)


other biologically active compounds

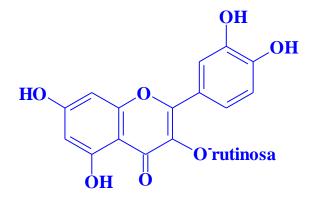
mostly B group vitamins (B-complex)

B ₈ , B ₄
B ₁₃
B ₁₅
B _t
B _x , H ₁
F
Ρ
U


adenylic acid (adenine) orotic acid pangamic acid carnitine 4-aminobenzoic acid essential fatty acids rutin (bioflavonoids) S-methylmethionine choline myo-inositol taurine coenzymes Q

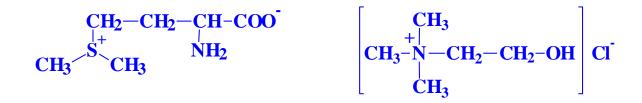


pangamic acid

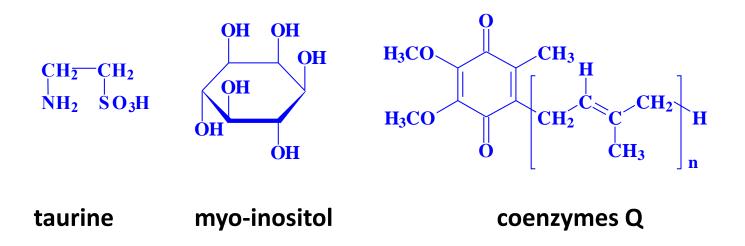

carnitine

4-aminobenzoic acid (H₁)

lipoic acid



rue (Ruta graveolens)


rutin (P) (quercetin -3-β-rutinoside, rutinose = rhamnose, glucose)

-name comes from the name of rue (*Ruta graveolens*) – formerly medicinal herb -rue have a culinary use if used sparingly, but it is bitter and gastric discomfort may be experienced by some individuals

S-methylmethionine

choline

